
Matthew Overby, George E. Brown, Jie Li, and Rahul Narain

APPENDIX A

CONVERGENCE OF ADMM ON A QUADRATIC PROBLEM

We consider the problem

\[
\begin{align*}
\min_{x,z} & \quad f(x) + g(z) \\
\text{s.t.} & \quad Ax + Bz = c.
\end{align*}
\]

(1)

where \(f \) and \(g \) are quadratic functions with positive definite Hessians \(H_f \) and \(H_g \) respectively. Without loss of generality, we may translate \(x \) and \(z \) so that the minima of \(f \) and \(g \) occur at \(x = 0 \) and \(z = 0 \) respectively. Thus we have \(f(x) = \frac{1}{2}x^T H_f x \) and \(g(z) = \frac{1}{2}z^T H_g z \). We assume that the constant term \(c \) in the constraint is zero; a nonzero \(c \) does not affect the convergence rate, though of course it must lie in the image of \(A \) and \(B \). Finally, we rescale the variables via \(\bar{x} = Px \) and \(\bar{z} = Qz \) such that \(P^T P = H_f \) and \(Q^T Q = H_g \), and rescale the constraint by a matrix \(W \). This yields the equivalent problem

\[
\begin{align*}
\min_{\bar{x},\bar{z}} & \quad \frac{1}{2} \|\bar{x}\|^2 + \frac{1}{2} \|\bar{z}\|^2 \\
\text{s.t.} & \quad \frac{W A}{A} \bar{x} + \frac{W B}{B} \bar{z} = 0.
\end{align*}
\]

(2)

Note that ADMM applied this problem has exactly the same convergence as when applied to the original objective \(\min f(x) + g(x) \) with the rescaled constraint \(WAx + WBz = 0 \).

In the \(x \)-step of ADMM, \(\bar{x}^{n+1} \) is determined completely by \(\bar{z}^n \) and \(u^n \) via

\[
\bar{x}^{n+1} = \arg \min_{\bar{x}} \left(\frac{1}{2} \|\bar{x}\|^2 + \frac{\rho}{2} \|A\bar{x} + B\bar{z}^n + u^n\|^2 \right) = -(I + \rho A^T A)^{-1} A^T (B\bar{z}^n + u^n).
\]

(3)

Therefore, the progress of the ADMM iterations is determined by the \(z \)- and \(u \)-steps. After some algebra, we obtain

\[
\begin{align*}
\bar{z}^{n+1} &= SB^T (\bar{A} \bar{R}^T \bar{B} \bar{z}^n - (I - \bar{A} \bar{R}^T) u^n), \\
u^{n+1} &= (I - BSB^T) (\bar{A} \bar{R}^T \bar{B} \bar{z}^n + (I - \bar{A} \bar{R}^T) u^n).
\end{align*}
\]

(4)

\[\text{and its convergence rate is determined by the spectral radius of the recurrence matrix,} \]

\[
r \left(\begin{bmatrix} SB^T \\ I - BSB^T \end{bmatrix} \begin{bmatrix} \bar{A} \bar{R}^T \bar{B} & I - \bar{A} \bar{R}^T \end{bmatrix} \right) = r \left(\begin{bmatrix} \bar{A} \bar{R}^T \bar{B} & I - \bar{A} \bar{R}^T \end{bmatrix} \begin{bmatrix} SB^T \\ I - BSB^T \end{bmatrix} \right) = r(\bar{A} \bar{R}^T BSB^T + (I - \bar{A} \bar{R}^T)(I - BSB^T)).
\]

(7)

In general, this expression cannot be simplified further. However, if \(\rho = 1 \) and \(B = I \), then we obtain \(S = (I + \rho B^T B)^{-1} = \frac{1}{2} I \), and the convergence rate becomes simply

\[
r \left(\frac{1}{2} \bar{A} \bar{R}^T + \frac{1}{2} (I - \bar{A} \bar{R}^T) \right) = \frac{1}{2}.
\]

(8)

This is achieved when \(B = WBQ^{-1} = I \), i.e., \(Q = WB \). Further, as \(Q \) is any matrix which satisfies \(Q^T Q = H_g \), we only require \((WB)^T (WB) = H_g \), equivalently, \(\frac{1}{2} \|WBx\|^2 = g(x) \).

APPENDIX B

PROOF THAT PROJECTIVE DYNAMICS \(\approx \) ADMM

We apply ADMM to the projective dynamics energy

\[
U_i(z_i) = \min_{p_i \in C_i} k_i \|z_i - p_i\|^2.
\]

(9)

In our formulation of ADMM, we have one parameter \(W \). We define \(W \) via \(W_i = w_i I = \sqrt{k_i} I \), so that \(W^TW = K \).

Then the energy can be conveniently expressed in terms of a single constraint manifold, \(C = C_1 \times C_2 \times \cdots \times C_m \):

\[
U_s(z) = \min_{p \in C} \frac{1}{2} (z - p)^T K (z - p)
\]

(10)

\[
= \min_{p \in C} \frac{1}{2} \|W(z - p)\|^2.
\]

(11)
Now the \(z \)-step of ADMM becomes
\[
\begin{align*}
z^{n+1} &= \arg\min_z \left(U_n(z) + \frac{1}{2} \|W(Dx^{n+1} - z + \bar{u}^n)\|^2\right) \\
&= \arg\min_z \left(\min_{p \in C} \frac{1}{2} \|W(z - p)\|^2 + \frac{1}{2} \|W(z - y)\|^2\right)
\end{align*}
\] (12)
where \(y = Dx^{n+1} + \bar{u}^n \). Consider the underlying minimization
\[
\min_{z, p \in C} \frac{1}{2} \|W(z - p)\|^2 + \frac{1}{2} \|W(z - y)\|^2.
\] (14)
For any fixed \(p \in C \), the minimum is attained at \(z = \frac{1}{2} (p + y) \) and its value is \(\frac{1}{2} \|W(p - y)\|^2 \). Therefore, the optimal \(p \) must minimize \(\|W(p - y)\|^2 \). For our choice of \(W \) and \(C \) this amounts to minimizing \(u_i\|p_i - y_i\|^2 \) independently for each \(i \), that is, choosing \(p_i = \text{proj}_C y_i = \text{proj}_C (D_i x^{n+1} + \bar{u}^n) \). So in fact we have
\[
\begin{align*}
p^{n+1} &= \text{proj}_C (D_i x^{n+1} + \bar{u}^n), \\
z^{n+1} &= \frac{1}{2} (p^{n+1} + Dx^{n+1} + \bar{u}^n).
\end{align*}
\] (15, 16)
Armed with (15)–(16), we will now eliminate \(z \) from the ADMM update rules in favour of \(p \). The \(u \)-update becomes
\[
\begin{align*}
\bar{u}^{n+1} &= \bar{u}^n + Dx^{n+1} - z^{n+1} \\
&= \bar{u}^n + Dx^{n+1} - \frac{1}{2} (p^{n+1} + Dx^{n+1} + \bar{u}^n) \\
&= \frac{1}{2} (Dx^{n+1} + \bar{u}^n - p^{n+1}).
\end{align*}
\] (17, 18, 19)
Conveniently, this also means that after the \(\bar{u} \)-update,
\[
\begin{align*}
z^{n+1} - \bar{u}^{n+1} &= \frac{1}{2} (p^{n+1} + Dx^{n+1} + \bar{u}^n) \\
&= \frac{1}{2} (Dx^{n+1} + \bar{u}^n - p^{n+1}) \\
&= p^{n+1}.
\end{align*}
\] (20, 21)
The \(x \)-update is now
\[
\begin{align*}
x^{n+1} &= (M + \Delta^2 D^T W^T W D)^{-1} \\
&= (M + \Delta^2 D^T W^T W (x^n - \bar{u}^n))^{-1} \left(M \bar{x} + \Delta^2 D^T W^T W p^n \right),
\end{align*}
\] (22, 23)
which is almost exactly like the \(p \)-update in projective dynamics, except for the presence of the dual variables \(\bar{u}_i \).

Finally, the \(u \)-update remains
\[
\begin{align*}
\bar{u}_i^{n+1} &= \frac{1}{2} (D_i x^{n+1} + \bar{u}_i^n - p_i^{n+1}) \\
&= \frac{1}{2} (D_i x^{n+1} + \bar{u}_i^n - p_i^{n+1})
\end{align*}
\] (24, 25, 26, 27)
which has no counterpart in projective dynamics.

So far we have seen that for a general constraint manifolds \(C_i \), projective dynamics and ADMM are extremely similar, with the only difference being the presence of the \(\bar{u}_i \) variables and their corresponding update rules. In the special case when the constraints are linear, that is, the manifolds \(C_i \) are affine, we further show that the two algorithms become identical.

Let \(C_i \) be an affine subspace with normal space \(N_i \). Then the projection operator \(\text{proj}_{C_i} \) has the properties that
\[
\begin{align*}
z_i &= \text{proj}_{C_i} z_i \in N_i, \\
\forall n \in N_i : \text{proj}_{C_i} (z_i + n) &= \text{proj}_{C_i} z_i.
\end{align*}
\] (28, 29)
We can see that
\[
\begin{align*}
\bar{u}_i^{n+1} &= \frac{1}{2} \left(D_i x^{n+1} + \bar{u}_i^n - p_i^{n+1}\right) \\
&= \frac{1}{2} \left(D_i x^{n+1} + \bar{u}_i^n - \text{proj}_{C_i} (D_i x^{n+1} + \bar{u}_i^n)\right) \\
&\in N_i,
\end{align*}
\] (30, 31, 32)
and so
\[
\begin{align*}
p_i^{n+1} &= \text{proj}_{C_i} (D_i x^{n+1} + \bar{u}_i^n) \\
&= \text{proj}_{C_i} D_i x^{n+1}
\end{align*}
\] (33, 34)
as long as \(u_i^0 \in N_i \) (for example, if we initialize \(u_i^0 = 0 \)).

This proves the equivalence of projective dynamics and ADMM for linear constraints. Furthermore, nonlinear constraints that are smooth can be well approximated by a linearization in the neighborhood of the solution, so both algorithms should behave similarly as they approach convergence.